

TRUST

- Trust is a well-known social behavior.
- It occurs between two entities;
 - a trustor who believes that the trustee's expected behavior occurs and is willing to take a risk for that belief.
- Many of modern systems and applications are interested in trust.
 - web applications
 - wireless networks
 - grid computing application
 - ...

9/6/20-

TRUST (CONT.)

- Trust Measurement
 - how to represent the value of trust between two nodes
- o Trust Management
 - tries to find a way to make decision based on trust values

TRUST MODELING

- So far, the only known method for modeling and verification of trust is application specific simulation.
 - User is forced to develop or have a specific tool for every application type.
 - there is no way to compare different methods.
- If Trust can be modeled by an standard formalism:
 - It may be simulated using standard simulation.
 - It may be checked using standard model checkers.

ATTACKS

- Trudy tries to be keeping herself as a trusted node using misleading actions or reputations.
 - She intends to execute her malicious plan whenever she deceives others.
- Every proposed model for trust must be able to model these attacks and also verify system against them.

ATTACKS (CONT.)

- o On-Off Attack
- Location-depend Attack
- Bad mouthing Attack
- Selective misbehavior
- o Sybil Attack
- o Newcomer Attack

SOME DEFINITIONS

• "Node":

- Refers to each entity of the society.
 A person in the society
 - A sensor in a wireless sensor network.
- "Action"
 - Perform a direct experiment
 - having a social manner
 - passing information over the network
- "Recommendation"
 - Perform an indirect experiment (i.e. reputation)

SOME DEFINITIONS (CONT.)

- The value of trust is just changed over the time as the discrete-event system.
 - The context of the environment is constant.
- Changes are performed by
 - Action Event
 - Trudy has acted something bad which makes Alice to do not trust Trudy anymore.
 - Recommendation Event
 - Alice might recommend to Bob about Trudy.

ACTION EVENTS

- o can be change the trust state of system.
 - may be bad or good
- In a real world usually there is no absolute good action or bad action.
 - Peoples may have small mistake or a big mistake.
- The model must difference between small and big misbehavior.
- So every action must have a weight which show the rate of its trueness.
 - w = 1: completely true
 - w = 0: completely false
 - w = 0.9: a good action with some mistake (e.g. 18 out of 20)

<section-header><section-header><section-header><section-header><section-header><section-header><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

- In children's story,
 - bad peoples always do bad actions.
 - heroes always do the best.
- In a real environment,
 - No hero, no complete black person.
 - no absolute good node or bad node.
- A real person may have good actions or bad actions.
 - Alice is a good person however she will sometimes naughty.
 - Trudy may sometimes act good to deceive others.

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

RECOMMENDATION EVENT

- A node x says the reputation of node y in its own viewpoint to node z.
- There are two types of nodes:
 - Truthful
 - Say the truth
 - Liar
 - o Say lie
- The liar node tries to mislead others using absolute false information.
 - In the real world an absolute liar will be discovered soon.
 - malicious nodes try to hide their lies between truths.

o So every recommendation event has a

• Veracity: level of trueness which shows how false it is.

• E.g. modeling bad mouthing -like attacks

Probability: which shows how often it occurs.
 E.g. Rumor, overstate, understate.

DEFINITIONS

- **Definition 1**: An action event means one node (e.g. x) does something for another node (e.g. y) which has a specified value called weight and may be happened with the probability of p.
- **Definition 2**: A recommendation event means one node (e.g. x) says its opinion about other nodes (e.g. z) to third node (e.g. y). It may be happened with the probability of p and has a veracity level.

MODELING TRUST

- Trust values
- o Peoples/Nodes
- Recommendation
- o Action

MODELING TRUST

- The model is independent of how trust is measured and used.
- Each state of the model contains just trust values between each two unique pair of nodes which is named *trust matrix*.
- **Definition 3**: The *trust matrix* (displayed by *Trust*) is a matrix which its rows and columns are nodes identity and its cells contain the corresponding trust values. *trust(x,y)* represents the trust value of node x to node y.

FORMAL DEFINITION

• Our trust model consists of:

$(S, I, \alpha, \rho, T_{\alpha}, T_{\rho})$

- S is the set of People/Nodes.
- I is an initial trust matrix.
- Alpha is the transition function for Action.
- Rho is the transition function for Recommendation.
- T-alpha update trust considering an action.
- T-rho update trust with regards of a recommendation.

INITIAL TRUST MATRIX

• Initial Trust shows that how people trust each others in the beginning of simulation/verification.

 $I: S \times S \rightarrow Trust$

• Initial Trust usually could be filled by:

 $a, b \in S, a \neq b$ $I(a, a) = \max trust$ $I(a, b) = \min trust$

ACTION EVENTS

• Alpha presents the Action events.

• X does something for Y.

 $\alpha: S \times S \to 2^{Weight \times P}$

- $x, y \in S, \alpha(x, y) = \{(w_1, p_1), (w_2, p_2), \dots, (w_n, p_n)\}$
- It is allowed to have more than one action event between two nodes

CPN MODEL

• Each CPN Model Consists of:

- Σ : Color set
- P: Place
- **T**: Transitions
- A: Arcs
- C: Color Function
- **G**: Guard Functions
- E: Arc Inscription
- I: Initialization Function

LIMITS OF CPN

- CPN does not allow to have color set of real number.
- All value must be Integer.

Trust, *Weight*, *Veracity* \in I

 $\min trust = 0, \max trust = 100, \min trust \le Trust \le \max trust$

 $0 \le Weight \le 100$

 $0 \le Veracity \le 100$

- Weight = 100 Best Action, Weight = 0 Worst Action
- Veracity = 0 Absolute lie, Veracity = 100 Truth

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

PLACES

• Any People/Node is modeled by a colored place.

• P=S

COLOR FUNCTION

• Define the type of each place:

$$\forall p \in P, C(p) = TrustToken$$

INITIALIZATION FUNCTION

• Initial Marking of Place p:

$$\forall p \in P, s \in S \perp s \equiv p \Longrightarrow I(p) = \bigcup_{x \in S} I(s, x)$$

TRANSITIONS

- There are two types of event
 - Action transition.
 - Recommendation transition.

9/6/201

TRANSITIONS - ACTIONS

Alpha function: For each w in α(x,y)
 we add a transition between Place X and Y:

- Transition is always enabled.
- Transition does not change the marking of X.
- The TrustToken of Y is replaced with a new marking with the regards of action w.

 $Tr'_{yx} = T_{\alpha}(Tr_{yx}, w) \wedge Same(Tr/Tr_{yx})$

TRANSITIONS - ACTIONS

- Rho function: for each v in ρ(x,y)
 we add a transition between Place X and Y:
 - Transition is always enabled.
 - Transition does change the marking of X.
 - The TrustToken of Y is replaced with a new marking with the regards of V.

 $\bigcup_{z \in S, z \neq x, z \neq y} Tr'_{yz} = T_{\rho}(Tr_{yz}, Tr_{yx}, Tr_{xz}, v)$ $\land same(Tr_{yx}) \land same(Tr_{yy})$

OUR TRUST MODEL • S={shangool, mangool, wolf}						
	I	Shangool	Mangool	Wolf		
	Shangool	100	30	0		
	Mangool	50	100	0		
	Wolf	0	0	100		
	α	Shangool	Mangool	Wolf		
	Shangool		5080	3060		
	Mangool	4070		4070		
	Wolf	100	100			
	ρ	Shangool	Mangool	Wolf		
	Shangool		8090	4070		
	Mangool	5080		5080	4	
	Wolf	2050	2050			

OUR TRUST MODEL: SIMPLE TRUST MEASUREMENT

- o T-Alpha:
 - [trust*4+weight]/5
- o T-Rho
 - [ta*(100-tb)+tc*tb*v]/100

RESULTS

Trust	Shangool	Mangool	Wolf
Shangool		48	90
Mangool	51		91
Wolf	45	55	

MAKING LEGEND

I	Shangool	Mangool	Wolf
Shangool	100	30	0
Mangool	50	100	0
Wolf	0	0	100
α	Shangool	Mangool	Wolf
Shangool		5080	
Mangool	4070		
Wolf			
ρ	Shangool	Mangool	Wolf
Shangool		8090	
Mangool	0100		
Wolf			

RESULTS

Trust	Shangool	Mangool	Wolf
Shangool		54	21
Mangool	60		17
Wolf			

SUMMARY

- In this paper, we have proposed a model for evaluation of Trust based on Colored Petri Nets.
- In the proposed model, each node do an action with a weight as its degree of trueness.
- Also each node could recommend each other again by a factor of veracity called v.
- Model is capable of either simulation or model checking.

FUTURE WORK

- Proposed method is unable to model some attacks;
 - On-off attacks
 - Need to include time [easy in Petri nets]
 - Absolute Badmouthing Attack:
 - Always say false, In our model a node may lie but the lie is not always false.
 - T-Alpha and T-Rho should be changed to
 - PxP->Trust

SELECTED REFRENCES

- S. Ruohomaa and L. Kutvonen, "Trust Manageme Survey," Lecture Notes in Computer Science (LUCS), vol. 3477, Springer-Verlag, 2005, pp. 77-92.
- Z. Malik and A. Bouguettaya, "Reputation Bootstrap-ping for Trust Establishment among Web Services," IEEE Internet Computing, vol. 13, no. 1, 2009, pp. 40-47.
- T. Eymann, S. Konig, and R. Matros, "A Framework for Trust and Reputation in Grid Environments," J. Grid Computing, vol. 6, no. 3, 2008, pp. 225–237.
- L. Rasmusson and S. Janson, "Simulated social control for secure Internet commerce," In New Security Paradigms '96, ACM Press, Sept 1996.
- A. Abdul-Rahman and S. Hailes, "A Distributed Trust Model," in Proceedings of the ACM New Security Paradigms Workshop, 1997, pp 47-60.

SELECTED REFRENCES

- A. Josang, R. Ismail, and C. Boyd, "A survey of thest and reputation systems for online service provision," Journal of Decision Support Systems, vol. 43, no. 2, 2007, pp. 618-644.
- M. Reith, J. Niu, and W.H. Winsborough, "Apply model checking to security analysis in trust management," in Data Engineering Workshop, 2007 IEEE 23rd International Conference on, 2007, pp. 734-743.
- H. Wu, C. Shi, H. Chen and C. Gao, "A Trust Management Model for P2P File Sharing System," International Conference on Multimedia and Ubiguitous Engineering (mue 2008), 2008, pp.41-44.
- J. Huang, and D. Nicol, "A Formal-Semantics-Based Calculus of Trust," IEEE Internet Computing, vol. 14, no. 5, 2010, pp. 38-46.

