CRYPTOGRAPHIC KEYS MANAGEMENT FOR H.264 SCALABLE CODED VIDEO SECURITY

Presented by: Mamoona Asghar PhD Scholar Department of Computing & Electronic Systems University of Essex, Colchester, United Kingdom. CO4 3SQ

ABSTRACT

- We investigate a problem of individual layer cryptographic key management issues in scalable video coding (H.264/SVC) and propose a top down hierarchical keys generation and distribution system by using a standard key management protocol MIKEY (Multimedia Internet Keying Protocol).
- Research goal is to enhance the security, while reducing the multiple encryption keys overhead for scalable video content retrieval, and derive a mechanism in which every entitled user needs to hold single encryption key to watch his subscribed layer data, but this key can open the doors of all layers below.
- The timing results are calculated for SVC bit-stream encryption/decryption and hierarchical keys generation to prove the suitability of the proposed scheme.
- Combine a standard protocol with the DRM (Digital Rights Management) techniques to accomplish the security demands of scalable video content on the application level.

Keywords- H.264/SVC; MIKEY; DRM; Cryptographic keys; AES encryption; security

INTRODUCTION

- Scalable multi-layered coded video requires its individual layer security, as every layer has its own characteristics i.e. bit-rate, frame rate, resolution and quality. The bit stream components of SVC are encapsulated in network abstraction layer (NAL) units which are then arranged as access units.
- Cryptography is a conventional technique to provide security to the multimedia contents.
- The key generation and distribution is the critically tackled issue to enhance the security of any cipher algorithm.
- Reviewed researches have their own devised key management mechanisms but don't provide any reference to any standard key management protocol.

INTRODUCTION (CONT.)

- For the hierarchical Scalable layers key generation/distribution, the standard Multimedia Internet Keying Protocol (MIKEY) protocol is implemented for SVC layer keys management.
- Advanced Encryption Standard (AES) block cipher used for encryption algorithm
- The research work incorporates the following DRM security processes.
 - Authentication key will be derived for the authentication of sender and receiver.
 - Encryption of Data with Cipher Algorithm
 - Key management with Standard Protocol

KEY MANAGEMENT ISSUES

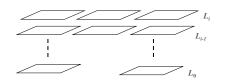
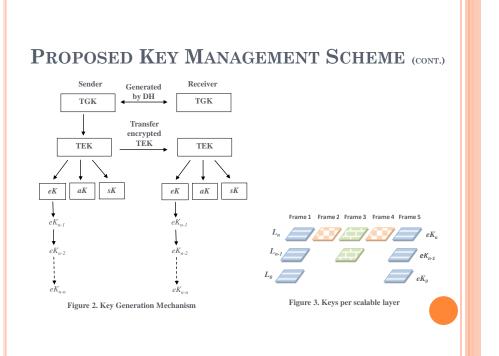


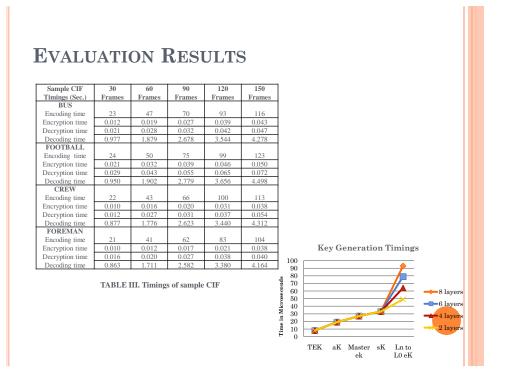
Figure1. Scalable Layers


TABLE I: Set of encryption keys should be held for each hierarchical layer

Layers	Encryption Keys held for each Layer			
L_i	$eK_{0,}eK_{1,}eK_{2,}eK_{3},\ldots,eK_{i-1},eK_{i}$	-		
L_{i-I}	$eK_0 eK_1 eK_2 eK_3, \dots, eK_{i-1}$			
L_3	$e{K_{0}}{k_{1}}, e{K_{2}}, e{K_{3}}$ $e{K_{0}}, e{K_{1}}, e{K_{2}}$ $e{K_{0}}, e{K_{1}}$			
L_2	$eK_{0,}eK_{1},eK_{2}$			
L_I	$eK_{0,}eK_{I}$			
L_{θ}	eK ₀			

MULTIMEDIA INTERNET KEYING PROTOCOL (MIKEY)

TABLE II. Characteristics of MIKEY keys


Keys	Key Length (bits)	Generation/ Distribution Methods & Parameters	MIKEY Constants	Key Life Time
TGK (Master key)	128	Diffie Hellman	DH prime & base values	01 month
TEK (Traffic Encryption key)	128	HMAC- SHA1(TGK)	0x2AD01C64	Daily for 12 Hrs.
Master Encryption key (<i>eK</i>)	128	HMAC- SHA1(TEK)	0x15798CEF	For Session
Authentication Key (<i>aK</i>)	160	HMAC- SHA1(TEK)	0x1B5C7973	Unique for every User
Salt Keys (sK)	112	HMAC- SHA1(TEK)	0x39A2C14B	Daily for 12 Hrs.

PROPOSED KEY MANAGEMENT SCHEME (CONT.)

There are five general equations for overall system keys generation:

• $TGK \rightarrow g^{sr} \mod p$ (Diffie Hellman)	(1)
• where p=prime no., g=generator, sr=sender & receiver RAND values	
• $TEK \rightarrow HMAC$ (TGK, MIKEY Constant RAND, TEK length)	(2)
• Master $eK \rightarrow HMAC$ (TEK, eK Constant $ $ RAND, eK length)	(3)
• $aK \rightarrow HMAC$ (TEK, aK Constant RAND, aK length)	(4)
• $sK \rightarrow HMAC$ (TEK, sK Constant RAND, sK length)	(5)
 General equations for generation of encryption keys for lower SVC layer eK_n → HMAC (TEK, eK_n Constant RAND, eK_n length) eK_{n-1} → HMAC (eK_n, eK_{n-1}Constant RAND, eK_{n-1} length) eK_{n-2}→HMAC (eK_{n-1}, eK_{n-2}Constant RAND, eK_{n-2} length) 	rs are: (6) (7) (8)
General equations for the bit streams encryption on all layers:	
• eK_n (encrypts) $\rightarrow L_n$ Frames $-L_{n-1}$ Frames	(9)
• $eK_{n-1} \rightarrow L_{n-1}$ Frames – L_{n-2} Frames	(10)

CONCLUSIONS

- This paper has proposed a compact key management and distribution system which is very efficient and greatly enhances the security of transmission.
- After the detailed analysis of key management protocol, the strength of cipher algorithm, and the encryption of layered data, it is expected that the proposed security scheme will be a desirable contribution for the security of scalable video coding especially its part of flexible hierarchical key management for all layers (top to bottom).
- The significance of the proposed method is that subscriber of each layer has only one encryption key to use, but this key can open the doors of all layers below.
- This cryptographic hierarchical key management scheme is suitable for the secure video distribution to users who have subscribed to a different video quality.