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Abstract—A novel quantum key distribution protocol using 

entanglement is presented. In this protocol, the stream of qubits 

is divided up into a sequence of qubit pairs. It is shown that by 

entangling the qubits in each qubit pair by randomly applying 

one of the two predefined unitary transformations before 

transmission, the protocol reveals less information about the key 

bit than the BB84 protocol, and the quantum bit error rate is also 

reduced. 
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I. INTRODUCTION 

The need to communicate secretly is considered as one of 

the most important challenges of the information age. To 

fulfill this goal, an encryption algorithm is used to combine a 

message with some additional information (a key) to produce 

a cryptogram. Consequently, secure key distribution is at the 

heart of cryptography. Recently quantum key distribution 

(QKD) schemes such as the BB84 protocol [1] have emerged 

to solve this problem. The security of QKDs are based on the 

quantum physical limitation that any measurement can 

potentially disturb the observed system [2]. In fact, quantum 

mechanics strictly forbids passive monitoring of a quantum 

channel due to the no-cloning theorem. In quantum 

cryptography, an eavesdropper’s ability is only limited by the 

principles of quantum mechanics. 

Since the publication of BB84, there has been much 

interest in quantum cryptography and many QKD protocols 

have been introduced [3, 4, 5, 6, 7, 8]. In this paper, a novel 

QKD protocol is presented in which Alice sends Bob a stream 

of entangled pairs of qubits, instead of a stream of qubits. Our 

analysis shows that our protocol has certain advantages over 

BB84. 

This paper is organized as follows: Section II defines the 

concept of efficiency. In Section III, we review and analyze 

BB84. In Sections IV and V, our proposed protocol is 

presented and evaluated. We summarize our contribution in 

Section VI. 

II. DEFINING EFFICIENCY 

We use a modified version of Cabello’s definition of 

efficiency [9] of QKD protocols in order to compare our 

protocol with BB84. Cabello defines efficiency as below 

  
  

     

  

where    is the number of secret key bits finally generated by 

the protocol, and    and    are the number of quantum and 

classical bits, respectively, transmitted during a QKD 

protocol. In that definition, the classical bits used for 

eavesdrop checking are ignored. However, since the 

transmission of qubits are more expensive than classical bits, 

we modify Cabello’s definition to give more weight to qubits 

as follows: 

  
  

      

  

where     is a weighting factor for the cost of qubits. 

 

 

III. REVIEW OF BB84 

In the BB84 scheme, Alice begins with two random strings 

of bits           and          . She then encodes 

these two strings as a string of   qubits 

   
   

 

     
 

where      together give an index into the following four 

states 

    | 〉         | 〉  
     | 〉   | 〉      | 〉   | 〉  

where   is the Hadamard operator. Alice sends   over a 

public quantum channel to Bob. Bob generates a random bit 

string    of length  , which determines the basis of 

measurement, and then measures the string  . The outcome is 

the bit string   . At this point, Bob announces publicly that he 

has received Alice's transmission. Then Alice announces  . 

Bob communicates over a public channel with Alice to 

determine which    and     are not equal. Both Alice and Bob 

now discard the qubits in   and    where   and    do not 

match which are on the average     bits. From the remaining 

    bits, for which both Alice and Bob used the same basis, 

Alice randomly chooses     bits (called check bit) and 

discloses her choices over the public channel. Both Alice and 

Bob announce check bits publicly and run a check to see if 

more than a certain number of them, agree. If this check phase 

passes, Alice and Bob use the information reconciliation and 

privacy amplification procedures [11, 12, 13] to create a 
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number of shared secret keys. Otherwise, they discard the 

sequence and start over. 

In quantum cryptography, an eavesdropper (so called Eve) 

is assumed to have the following capabilities: She can 1) 

freely tamper with the quantum channel, 2) listen to the 

classical channel. Any  method of eavesdropping causes errors 

to the quantum transmission, quantified by Quantum Bit Error 

Rate (QBER). The errors allow Alice and Bob to detect Eve's 

interference and to obtain an estimate on Eve's maximal 

information about the key. The Intercept-Resend attack is the 

most common eavesdropping strategy, which is allowed by the 

laws of quantum physics. In this type of attack, Eve intercepts 

each qubit sent by Alice, measures the qubit state and resends 

to Bob the qubit which is the result of her measurement. In the 

BB84 protocol, Eve performs her measurements exactly like 

Bob: For each qubit, she chooses at random between the two 

measurement bases, i.e., basis of Pauli's   or   matrices. If 

Eve uses the   basis in a measurement, an outcome   means 

that Eve sends | 〉, and outcome   means that she sends | 〉 to 

Bob. If Eve's measurement basis is  , she re-sends | 〉 if the 

result is  , and | 〉 if the result is 1. 

Since for transmission of   qubits, it is required to transmit 

  basis information, and half of the qubits on average are 

omitted due to basis incompatibility, the efficiency of the 

protocol will be 

  
(
 

 
)

    
. 

The amount of knowledge that Eve obtains about Alice's 

bit sequence,   (after basis reconciliation) is quantified by 

Shannon's mutual information [10] 

 (   )   ( )   ( )   (   )  
where   is the random variable denoting the outcome of each 

of Eve's measurements. The entropy of   is:  
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Also we have  
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Also  
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which is equal to 
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when Alice's and Eve's bases are the same, and is equal to  

  (
 

 
    

 

 
)     

 

when their bases are different. Since Eve's choice of basis is 

correct half the time on average, we have 
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 therefore 
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It means that Eve gains 0.5 bits of information per key bit. If 

Eve guesses the basis correctly, there will be no disturbance 

and Alice and Bob will get the same result, in the other case, 

in half of the times, on average, Alice and Bob measurement 

results are different, so the QBER is equal to 0.25. Since in the 

BB84 protocol, there is no entanglement among the 

transmitted qubits, interception of one qubit may result in the 

disturbance of that qubit only and not on the others. Therefore 

if Eve is lucky enough that none of the qubits she has 

measured belong to the check set, she will not be detected at 

all!  

 

IV. PROPOSED ALGORITHM 

Before the protocol begins, Alice and Bob publicly agree 

on two 2-qubit unitary transformations,    and     which are 

defined as follows 

           (   )      (   )  
   (      ) (   )      (   )  

where   is the Hadamard gate,        is the controlled-not 

gate,  and          and  (      )  are equal to:  

          |  〉          |  〉  
(      )    |  〉  (     )  |  〉  

where:  

       (
  
  

)  

(     )   (
  
   

). 

It is easy to verify that    and    generate entanglement since 

they cannot be decomposed into   . Alice generates a 

number of random bits divided in groups of 2. The bit string 

       denotes such a group. In the next step, she prepares 

| 〉  |    〉 and applies randomly one of    or    to it. She 

then transmits the two qubits one at a time, always waiting for 

Bob to acknowledge the reception of the previous qubit before 

she sends the next one. This prevents Eve from perfectly 

undoing the transformation    or   . When Bob receives each 

qubit, he immediately acknowledges the qubit. Then Alice 

discloses her choice of transformation.  

Bob undoes the transformation by applying   
 
 or   

 
, and then 

measures the qubits in the computational basis and obtains the 

raw key bits. In the eavesdropp checking phase, Alice 

randomly selects one qubit of each group and discloses them 

on a public channel to compare it with Bob measurement 

result. If more than a predetermined number of bits disagree, 

they abort the protocol and start over. Otherwise they proceed 
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to use information reconciliation and privacy amplification 

procedures to create a number of shared secret keys. 

V. ANALYSIS 

In the proposed protocol, all transmitted qubits are useful 

(unlike      that half of qubits are discarded on average) and 

one classical bit is used to acknowledge receiving each qubit 

and one classical bit is used for determining the basis of each 

group of qubits so efficiency is equal to 

  
 

   
 

 
  

 , 

where   is the number of transmitted qubits. 

In the proposed protocol, the basis that Eve chooses for 

measurement has a significant impact on the information she 

gains. We analyze the intercept-resend attack in three cases. 1) 

Eve measures both qubits of a qubit pair in the computational 

basis, 2) she measures both in an arbitrary basis, and 3) she 

measures only one qubit of each qubit pair in an arbitrary 

basis.  

Case 1. Eve measures both qubits in the Z basis: The 

mutual information,  (   ), that Eve gains about Alice's key 

is equal to 

 (   )  
 

 
  ( )   ( )   (   )   

 The factor 
 

 
 ensures that the equation yields mutual 

information per bit, since  ,  are both 2-bit entries.  
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Therefore  

 (   )  
 

 
  ( )   ( )   (   )     

This means that Eve gains no information about Alice's key. 

When Eve measures both qubits of a group, the state collapses 

to one of the four states |  〉 |  〉 |  〉 and |  〉with the 

same probability 0.25, so in the check phase, the measurement 

outcome for each of the check qubits is 0 or 1 with probability 

0.5; then obviously in this case QBER is 0.5. 

Case 2.  Eve measures both qubits in a quibit pair in an 

arbitrary basis: In this case, we allow Eve to measure each 

qubit in a possibly different basis. This is equivalent to 

allowing Eve to apply arbitrary gates to each qubit and then 

measure both qubits in the   basis. She then undoes the 

previously applied single-qubit gate before sending the qubit 

to Bob. Normally Eve wants to maximize her information of 

Alice's key with the minimum increase in QBER [15], so she 

maximizes the metric   
 (   )

    
  We used a genetic algorithm 

to find Eve's optimum transformations. The solution turns out 

to be 

   
 (

              
             

)  

 

   
 (

                     
                      

)  

In this case,  (   )        and QBER is 0.43 so 

   
     

    
       . 

Case 3.  Eve measures only one qubit in each qubit pair in an 

arbitrary basis: As mentioned before, the optimization method 

is used for finding the best measurement that Eve may do. The 

best solution for her is to apply the following unitary at the 

first qubit and measure the first qubit, in the   basis:  

  (
                     
                     

)  

 (   ) will be 0.204 and QBER will be 0.391. Therefore 

   
     

     
       . 

Even in a qubit pair that Eve does not measure, QBER is equal 

to 0.28. This happens because of the entanglement in each 

qubit pair. 

The above analysis allows us now to compare our protocol 

with BB84. Table I summarizes the results of our analysis.  

 
TABLE I: Comparison of proposed algorithm with BB84 

 
Protocol   Mutual 

information/QBER(F)  
BB84      

 

Our protocol 
          

          

 

It is shown that the value of metric   is decreased by a 

factor of      when Eve measures both qubits of each group 

and by the factor of      when Eve measures both of qubits of 

each group. 

VI. CONCLUSION 

In this paper, we introduced and analyzed a novel QKD 
protocol that utilizes entanglement to provide advantage 
against eavesdropper. We analyzed the security of the protocol 
under an intercept-resend attack. We showed that the metric F, 
of the proposed protocol is better than that of BB84. Our 
protocol is easily extendable to    . In that case, Alice and 
Bob agree on two  -qubit inseparable transformations. Then 
Alice applies one of these transformations to an N-tuple of 
qubits. In the checking phase, half of qubits of each group are 
disclosed.  
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