In the name of Allah

Slide Attacks with Probability 1
Shahsavaran

Contents

- Slide cryptanalysis in a nutshell
- A brief description of Blowfish
- Slide cryptanalysis of a blowfish variant [BirWag]
- Slide cryptanalysis of a blowfish variant (with success prob of 1)
- Application of the new idea to non-Feistel algorithms
- Biham related-key attack(with success prob of 1)

Slide Cryptanalysis

- E is a block cipher. E_k the encryption function with key k
- Preconditions of slide attack:
 - 1. E_k can be written as the composition of sevral identical functions

$$E_{k}(P) = (F_{K'} \circ F_{K'} \circ ... F_{K'})(P)$$

2. having 2 known-plaintext equations

$$F_{K}'(x_1)=y_1$$

 $F_{K}'(x_2)=y_2$

the key k' can be "easily" recovered

Slide Cryptanalysis

- Slide attack:
 - 1. Look for a pair of plntxts (P1,P2) st $F_K'(P_1)=P_2$ $\rightarrow F_K'(C_1)=C_2$

Slide Cryptanalysis

- Slide attack (cont'd):
 - 2. $F_{K'}(P_1)=P_2 \& F_{K'}(C_1)=C_2$ are expected to reveal k'.
- How to find (P1,P2) st $F_K'(P_1)=P_2$?
 - Common approach: gather almost 2^{n/2} known pairs(Pi,Ci).
 - Birthday paradox → with good prob, there is at least 1 pair (P1,P2) st F_K'(P₁)=P₂
 - The existence of such pairs is probabilistic.
- Our method guarantees the existence of such a pair with prob=1, for some special cases.

Slide cryptanalysis of Blowfish – Pi's [BirWag]

- Consider Blowfish Pi's
- Consider the eq F(x)=y

$$[(s_1(x_1) + s_2(x_2)) \oplus s_3(x_3)] + s_4(x_4) = y$$

- This eq gives 32 bits of info about the sbox entries.
- Every slide pair \rightarrow 2x32=64 bits of info.
- 1024 sbox entries in total . 29=512 slide pair needed.

Slide cryptanalysis of Blowfish – Pi's [BirWag]

- Consider Blowfish Pi's
- How to find a slide pair?
- Consider the 2 sets $\{X_i \mid i=1,2,\ldots,2^{16}\}$ and $\{Y_j \mid j=1,2,\ldots,2^{16}\}$
- Birthdav paradox \rightarrow with prob~0.5 , there is X_i & Y_i st $F(R) \oplus X_i = Y_j$
- \rightarrow $F_1(R,X_i)=(Y_j,R)$: a slide pair.

Slide cryptanalysis of Blowfish - Pi's

- Consider Blowfish Pi's
- The previous approach for obtaining a slide pair is probabilistic.
- How to find a slide pair with prob 1?
- The idea is to use chosen plaintexts instead of known plaintexts.
- (R,X_i) & (Y_j,R) are a slide pair iff $F(R) \oplus X_i = Y_j$ or $X_i \oplus Y_i = F(R)$
- F(R) is constant, so if we choose $X_i \& Y_j$ st $X_i \oplus Y_j$ spans all 32bit values, one will equal F(R).

Slide cryptanalysis of Blowfish – Pi's

- Consider Blowfish Pi's
- One such set of texts is $X_i=a_i||0_{16}$ and $Y_i=0_{16}||a_j|$ where $a_i=i$. $X_i \oplus Y_j=a_i||a_j|$
- When i&j span the set {1,2,...,2¹⁶} independently, a_i||a_i will span the set {1,2,...,2³²}
- So for one (i,j): $X_i \oplus Y_j = F(R)$
- NOTE: we are sure there is one slide pair, but we can't tell it from other pairs.
- the process of identifying the slide pair is as before.

Slide cryptanalysis of Blowfish - Pi's

- Consider Blowfish Pi's
- for each R there is one slide pair with certainty.
- we need 512 slide pairs
 - change R and each time use the above-mentioned type of texts.

extension to nonFeistel algorithms

- q
 - arbitrary
 - unKeyed
 - invertible
- (p,p') is a slide pair iff

$$\mathrm{p}^{'}=\mathrm{g}(\mathrm{p}\oplus \mathit{K}')$$

$$\text{Or} \quad g^{-1}(p^{'}) \oplus p = \mathit{K'}$$

extension to nonFeistel algorithms

- 2n= block lengths
- put $p_i=a_i||0_n$ and $g^{\text{-1}}(p'_j)=0_n||a_j|$ where ' $a_i=i$ for $i=0,\ 1,\ \dots,\ 2^n\text{-1}$ $g^{-1}(p'_j)\oplus p_i=a_i||a_j|$
- When i&j span the set {1,2,...,2ⁿ} independently, a_i||a_j will span the set {1,2,...,2²ⁿ}
- so $p_i=a_i||0_n$ and $p'_j=g(0_n||a_j)$
- Data complexity is exactly 2ⁿ+2ⁿ

extension to nonFeistel algorithms

- the key combining operation is not restricted to simple xor.
- e.g. for p=(p₁,p₂,p₃,p₄) and K'=(k'₁,k'₂,k'₃,k'₄)
 -p+K'=((p₁+ k'₁)mod2³², (p₂+ k'₂)mod2³², (p₃+ k'₃)mod2³², (p₄+ k'₄)mod2³²)
- (p,p') is a slide pair iff p' = g(p + K')or $g^{-1}(p') - p = K'$

extension to nonFeistel algorithms

- put $\begin{aligned} p_{i,j} &= (-a_i, -a_j, 0_{32}, 0_{32}) \\ p'_{m,n} &= g(0_{32}, 0_{32}, a_m, a_n) \end{aligned}$
- where a_i=i for i=0, 1, ..., 2³²-1

$$g^{-1} \big(p'_{m,n} \big) - p_{i,j} = (a_i, a_j, a_m, a_n)$$

Biham's related-key attack

- Applicable to algorithms whose
 - i-th rnd func is the same as the 1st rnd func
 - (i+1)-th rnd func is the same as the 2^{nd} rnd func

— ...

for some small i (1 or 2)

- plus for each key K with subkeys k₀,k₁,... there is a related-key K' with subkeys k'₀,k'₁,... st k'₀=k_i, k'₁=k_{i+1}, ...

- If $P' = g(P \oplus k_0)$ then $C' = g(C) \oplus k'_m$ and these two relations are expected to reveal info about subkeys.
- The problem is to find (P,P') st $P' = g(P \oplus k_0)$
- Traditional method : appeal to birthday paradox
 - probabilistic in nature
- Our method can guarantee the existence of (P,P') with prob 1

- 1- Feistel type rnd func
 - F: absolutely arbitrary
- We have to find (P₁, P₂) and

$$(P'_1, P'_2)$$
 st $P'_1 = P_2$
 $F(K, P_2) \oplus P_1 = P'_2$

Biham's related-key attack

- 1- Feistel type rnd func
- put $\begin{aligned} P_1^{(i)} &= a_i || 0_n \\ P_2^{'(j)} &= 0_n || a_i \end{aligned}$

then
$$P_1^{(i)} \oplus P_2^{'(j)} = a_i || a_j$$
 and for each constant R, $F(K,R) = P_1^{(i)} \oplus P_2^{'(j)}$ occurs for some i&j.

- 1- Feistel type rnd func
- So a possible candidate is

$$(P_1^{(i)}, P_2) = (a_i||0_n, R)$$

$$(P_{1}^{'},P_{2}^{'(j)})=(R\,,0_{n}||a_{j})$$

where $a_i=i$ for $i=0, 1, ..., 2^{n-1}$ (2n= block len)

• the combining operation need NOT be restricted to xor.

Biham's related-key attack

- 1- nonFeistel type rnd func
- g as before (SPN a special case)
- the key combining op need NOT be restricted to xor.
- previous solution works

$$P' = g(P \oplus K)$$

- Conclusion: The idea works well for i=1 and with some restriction on the round structure.
- Avenue for future research :
 - find similar methods for i=2.

Biham's related-key attack

Any Question?